Tool Wear and its Effect on Residual Tensile Strength in Drilling of Quartz Cyanate Ester Polymeric Composite
Abstract
Quartz-Fibre-Reinforced cyanate ester Plastics (QFRP) has superior performance in terms of mechanical, electromagnetic properties and are being widely used in military applications. Drilling is the general machining process for making hole to join the composite part to another sub-assembly. This study presents an influence of optimized drilling parameters on carbide tool wear and its impact on hole characteristics in QFRP composite. The aim is to achieve the optimum use of drill during the drilling process from application perspective without compromising the quality. In addition, the effect of tool wear and its impact on residual tensile strength of quartz composite are studied. The dominant wear mechanism observed is flank wear caused by the abrasive nature of the quartz fibre. The tool wear and delamination factor after drilling 200 holes are 186 µm and 1.40 respectively. The residual strength is affected by the tool wear due to relatively poor interlaminar property between fiber and resin in this quartz composite. The residual strength of quartz specimen drilled with the tool after drilling 200 holes is 14 % lower than the property of specimen drilled with fresh drill. The highlight of the present work is a combined analysis of wear in the tool, delamination induced and residual strength of quartz specimen. The results of this study strengthen the understanding of the drilling process of quartz polymeric composite material in aerospace applications.
Quartz preform in the mould.
…
Finished quartz laminate.
…
Image of fresh carbide drill bit showing flank surface.
…
Drilling experiment on quartz composite held in fixture.
…
+2
Effect of number of holes drilled on flank wear in tool.
…
Description
Indexed in scopushttps://www.scopus.com/authid/detail.uri?authorId=57204174334 |
Article metrics10.31763/DSJ.v5i1.1674 Abstract views : | PDF views : |
Cite |
Full Text![]() |
Conflict of interest
“Authors state no conflict of interest”
Funding Information
This research received no external funding or grants
Peer review:
Peer review under responsibility of Defence Science Journal
Ethics approval:
Not applicable.
Consent for publication:
Not applicable.
Acknowledgements:
None.