A Novel Traffic Based Framework for Smartphone Security Analysis
Abstract
Android Operating system (OS) has grown into the most predominant smartphone platform due to its flexibility and open source characteristics. Because of its openness, it has become prone to numerous attackers and malware designers who are constantly trying to elicit confidential information by articulating a plethora of attacks through these designed malwares. Detection of these malwares to protect the smartphone is the core function of the smartphone security analysis. This paper proposes a novel traffic-based framework that exploits the network traffic features to detect these malwares. Here, a unified feature (UF) is created by graph-based cross-diffusion of generated order and sparse matrices corresponding to the network traffic features. Generated unified feature is then given to three classifiers to get corresponding classifier scores. The robustness of the suggested framework when evaluated on the standard datasets outperforms contemporary techniques to achieve an average accuracy of 98.74 per cent.
Proposed traffic-based framework for smartphone security analysis.
…
experimentation dataset
…
Performance comparison in terms of accuracy with existing methods using captured data from 20 different apps
…
Performance metrics (Pm) for proposed methods and other comparative methods.
…
Description
Indexed in scopushttps://www.scopus.com/authid/detail.uri?authorId=57204745215 |
Article metrics10.31763/DSJ.v5i1.1674 Abstract views : | PDF views : |
Cite |
Full Text![]() |
Conflict of interest
“Authors state no conflict of interest”
Funding Information
This research received no external funding or grants
Peer review:
Peer review under responsibility of Defence Science Journal
Ethics approval:
Not applicable.
Consent for publication:
Not applicable.
Acknowledgements:
None.