Generic Methodology for Formal Verification of UML Models
Abstract
This paper discusses a Unified Modelling Language (UML) based formal verification methodology for early error detection in the model-based software development cycle. Our approach proposes a UML-based formal verification process utilising functional and behavioural modelling artifacts of UML. It reinforces these artifacts with formal model transition and property verification. The main contribution is a UML to Labelled Transition System (LTS) Translator application that automatically converts UML Statecharts to formal models. Property specifications are derived from system requirements and corresponding Computational Tree Logic (CTL)/Linear Temporal Logic (LTL) model checking procedure verifies property entailment in LTS. With its ability to verify CTL and LTL specifications, the methodology becomes generic for verifying all types of embedded system behaviours. The steep learning curve associated with formal methods is avoided through the automatic formal model generation and thus reduces the reluctance of using formal methods in software development projects. A case study of an embedded controller used in military applications validates the methodology. It establishes how the methodology finds its use in verifying the correctness and consistency of UML models before implementation.
Methodology workflow.
…
sensor deployment controller -context of operation.
…
Lowering sensor structure -use cases.
…
WinchMotorhandling statechart.
…
+5
Lts for WinchMotorhandling.
…
Description
Indexed in scopushttps://www.scopus.com/authid/detail.uri?authorId=57205630041 |
Article metrics10.31763/DSJ.v5i1.1674 Abstract views : | PDF views : |
Cite |
Full Text![]() |
Conflict of interest
“Authors state no conflict of interest”
Funding Information
This research received no external funding or grants
Peer review:
Peer review under responsibility of Defence Science Journal
Ethics approval:
Not applicable.
Consent for publication:
Not applicable.
Acknowledgements:
None.