Studies of Jet A1 Fuel Atomisation Through Non-Circular Orifices.
Abstract
The performance of the liquid rocket engine depends on the atomization behavior of the fluid being injected into the combustion chamber. Generally, a plain injector with a circular orifice has been used in the injector, but it has the disadvantage of having a low spray cone angle. The breakup length, mean droplet diameter, and Sauter mean diameter is also higher. Thus, to overcome these drawbacks, non-circular orifices have been utilized in the present study. The shapes used for non-circular orifices are semi-circular and plus. The results obtained with the non-circular orifice is compared with the circular orifices of the same area ratio. The working fluid used for the studies is Jet A1 fuel. Studies were also conducted with different L/D ratios by choosing an effective orifice length to reduce the upstream losses. The axis-switching phenomena were observed with the semi-circular as well as with the plus jets. The mean droplet size of the circular jets was more prominent compared to non-circular jets, and the Sauter mean diameter of non-circular jets droplets was smaller than that of the circular jet droplet. The spray cone angle has increased by 290% for plus jets and 30% for semi-circular jets compared to circular jets.
Subjects
JET fuel; COMBUSTION chambers; ROCKET engines; WORKING fluids; RELATIONSHIP breakup; INJECTORS
Description
Indexed in scopushttps://openurl.ebsco.com/EPDB%3Agcd%3A6%3A28280790/detailv2?sid=ebsco%3Aplink%3Aresult-item&id=ebsco%3Adoi%3A10.14429%2Fdsj.73.17893&bquery=Defence%20Science%20Journal&page=4&link_origin=www.google.com |
Article metrics10.31763/DSJ.v5i1.1674 Abstract views : | PDF views : |
Cite |
Full Text![]() |
Conflict of interest
“Authors state no conflict of interest”
Funding Information
This research received no external funding or grants
Peer review:
Peer review under responsibility of Defence Science Journal
Ethics approval:
Not applicable.
Consent for publication:
Not applicable.
Acknowledgements:
None.