Experimental and Numerical Study of Magnetorheological Clutch with Sealing at Larger Radius Disc.
Abstract
In the existing magnetorheological clutch, there is a problem of improper transmission of torque or inefficiency in the transmission of torque. Research is carried out to improve the design of the magnetorheological clutch. Using simulation techniques and experimental study, a new seal at the outer radius is designed to improve the torque transmission of the magnetorheological clutch. The fluid flow between the input and output shafts are studied using COMSOL Multiphysics v5.3a software. The optimized design of the seal is subjected to experimental study and torque transmitted is measured. The results show an improvement in the torque transmission with the introduction of the new seal.
Subjects
FLUID flow; ISOKINETIC exercise; COMPUTATIONAL fluid dynamics
Description
Indexed in scopushttps://openurl.ebsco.com/EPDB%3Agcd%3A2%3A28280546/detailv2?sid=ebsco%3Aplink%3Aresult-item&id=ebsco%3Adoi%3A10.14429%2Fdsj.70.15778&bquery=Defence%20Science%20Journal&page=8&link_origin=www.google.com |
Article metrics10.31763/DSJ.v5i1.1674 Abstract views : | PDF views : |
Cite |
Full Text![]() |
Conflict of interest
“Authors state no conflict of interest”
Funding Information
This research received no external funding or grants
Peer review:
Peer review under responsibility of Defence Science Journal
Ethics approval:
Not applicable.
Consent for publication:
Not applicable.
Acknowledgements:
None.