Design of RF Receiver Front-end Subsystems with Low Noise Amplifier and Active Mixer for Intelligent Transportation Systems Application.
Abstract
This paper presents the design, simulation, and characterization of a novel low-noise amplifier (LNA) and active mixer for intelligent transportation system applications. A low noise amplifier is the key component of RF receiver systems. Design, simulation, and characterization of LNA have been performed to obtain the optimum value of noise figure, gain and reflection coefficient. Proposed LNA achieves measured voltage gains of ~18 dB, reflection coefficients of -20 dB, and noise figures of ~2 dB at 5.9 GHz, respectively. The active mixer is a better choice for a modern receiver system over a passive mixer. Key sight advanced design system in conjunction with the electromagnetic simulation tool, has been to obtain the optimal conversion gain and noise figure of the active mixer. The lower and upper resonant frequencies of mixer have been obtained at 2.45 GHz and 5.25 GHz, respectively. The measured conversion gains at lower and upper frequencies are 12 dB and 10.2 dB, respectively. The measured noise figures at lower and upper frequencies are 5.8 dB and 6.5 dB, respectively. The measured mixer interception point at lower and upper frequencies are 3.9 dBm and 4.2 dBm.
Subjects
LOW noise amplifiers; INTELLIGENT transportation systems; REFLECTANCE
Description
Indexed in scopushttps://openurl.ebsco.com/EPDB%3Agcd%3A11%3A28280555/detailv2?sid=ebsco%3Aplink%3Aresult-item&id=ebsco%3Adoi%3A10.14429%2Fdsj.70.13917&bquery=Defence%20Science%20Journal&page=8&link_origin=www.google.com |
Article metrics10.31763/DSJ.v5i1.1674 Abstract views : | PDF views : |
Cite |
Full Text![]() |
Conflict of interest
“Authors state no conflict of interest”
Funding Information
This research received no external funding or grants
Peer review:
Peer review under responsibility of Defence Science Journal
Ethics approval:
Not applicable.
Consent for publication:
Not applicable.
Acknowledgements:
None.