Thermo-mechanical and Control Behaviour of Copper-based Shape Memory Alloy Bimorph Actuator towards the Development of Micro Positioning System.
Abstract
A shape memory alloy (SMA) bimorph actuator is a composite structure composed of flexible polyimide substrate and SMA thin film deposited using thermal evaporation technique. In this work, the substrate thickness in the range of 25 - 75 mm was selected for the development of CuAlNiMn SMA bimorph actuator. An investigation on the control behavior of copper based SMA bimorph towards the development of micro positioning system has been performed. The actuation behavior of the SMA bimorph was studied using electrical actuation. Subsequently, a proportional integral derivative (PID) controller was designed to control the bimorph actuator with proper tuning of gain parameters. The displacement of the bimorph actuator was controlled through dedicated experimental setup consisted of laser displacement sensor, data acquisition system and LabVIEW software. The CuAlNiMn SMA bimorph actuator resulted in a satisfying control performance which can be extended to MEMS applications. A preliminary prototype of the SMA bimorph actuator based micro positioning system has been developed.
Subjects
SHAPE memory alloys; ANTHOLOGY films; ACTUATORS; DATA acquisition systems; FLEXIBLE structures; COMPOSITE structures
Description
Indexed in scopushttps://openurl.ebsco.com/EPDB%3Agcd%3A14%3A28280558/detailv2?sid=ebsco%3Aplink%3Aresult-item&id=ebsco%3Adoi%3A10.14429%2Fdsj.70.15516&bquery=Defence%20Science%20Journal&page=8&link_origin=www.google.com |
Article metrics10.31763/DSJ.v5i1.1674 Abstract views : | PDF views : |
Cite |
Full Text![]() |
Conflict of interest
“Authors state no conflict of interest”
Funding Information
This research received no external funding or grants
Peer review:
Peer review under responsibility of Defence Science Journal
Ethics approval:
Not applicable.
Consent for publication:
Not applicable.
Acknowledgements:
None.