Effect of silicon carbide and wire-mesh reinforcements in dissimilar grade aluminium explosive clad composites
Abstract
Aluminium composites are inevitable in the manufacture of aircraft structural elements owing to less weight, superior corrosion resistance and higher specific properties. These composites reduce the weight of the aircraft, improve the fuel efficiency and enhance the maintenance duration. This study proposes the development of dissimilar grade aluminium (aluminium 1100-aluminium 5052) composites with different reinforcement’s viz., stainless steel wire-mesh, silicon carbide (SiC) powders and SiC powder interspersed wire-mesh, by explosive cladding technique. Wire-mesh enhances the friction and restricts the movement of flyer plate to craft a defect free clad, while SiC particles form a band on the interface. Highest strength is obtained when SiC powder interspersed wire mesh is employed as reinforcement. The dissimilar aluminium explosive clad with SiC particle reinforcement results in lower strength, which is higher than that of the weaker parent alloy and that of the conventional dissimilar aluminium explosive clads without any reinforcement.
Keywords
Explosive cladding
Aluminium
Wire mesh
Silicon carbide
Microstructure
Strength
Description
Indexed in scopushttps://www.scopus.com/authid/detail.uri?authorId=7006110952 |
Article metrics10.31763/DSJ.v5i1.1674 Abstract views : | PDF views : |
Cite |
Full Text![]() |
Conflict of interest
“Authors state no conflict of interest”
Funding Information
This research received no external funding or grants
Peer review:
Peer review under responsibility of Defence Science Journal
Ethics approval:
Not applicable.
Consent for publication:
Not applicable.
Acknowledgements:
None.