A split target detection and tracking algorithm for ballistic missile tracking during the re-entry phase
Abstract
In the re-entry phase of a ballistic missile, decoys can be deployed as a mean to overburden enemy defenses. This results in a single track being split into multiple track-lets. Tracking of these track-lets is a critical task as any miss in the tracking procedure can become a cause of a major threat. The tracking process becomes more complicated in the presence of clutter. The low detection rate is one of the factors that may contribute to increasing the difficulty level in terms of tracking in the cluttered environment. This work introduces a new algorithm for the split event detection and target tracking under the framework of the joint integrated probabilistic data association (JIPDA) algorithm. The proposed algorithm is termed as split event-JIPDA (SE-JIPDA). This work establishes the mathematical foundation for the split target detection and tracking mechanism. The performance analysis is made under different simulation conditions to provide a clear insight into the merits of the proposed algorithm. The performance parameters in these simulations are the root mean square error (RMSE), confirmed true track rate (CTTR) and confirmed split true track rate (CSTTR).
Keywords
Split event probability
JIPDA
Data association
Ballistic missile
Estimation
Description
Indexed in scopushttps://www.scopus.com/authid/detail.uri?authorId=57195959292 |
Article metrics10.31763/DSJ.v5i1.1674 Abstract views : | PDF views : |
Cite |
Full Text![]() |
Conflict of interest
“Authors state no conflict of interest”
Funding Information
This research received no external funding or grants
Peer review:
Peer review under responsibility of Defence Science Journal
Ethics approval:
Not applicable.
Consent for publication:
Not applicable.
Acknowledgements:
None.