Development of cost effective personnel armour through structural hybridization

Received: 14 Aug 2020, Revised: 17 Aug 2020, Accepted: 22 Dec 2020, Available online: 25 Dec 2020, Version of Record: 25 Dec 2020

P. Rama Subba Reddy a, T. Sreekantha Reddy a, I. Srikanth b, Juhi Kushwaha b, V. Madhu a
a
Defence Metallurgical Research Laboratory, Hyderabad, 500 058, India
b
Advanced Systems Laboratory, Hyderabad, 500058, India

Abstract


The objective of the present study is to develop cost effective thermoplastic hybrid laminate using Dyneema® HB50 and Tensylon®HSBD 30A through structural hybridization method. Laminates having 20 mm thickness were fabricated and subjected to 7.62 × 39 mm mild steel core projectile with an impact velocity of 730 ± 10 ms−1. Parameters such as energy absorption, back face deformation and rate of back face deformation were measured as a function of hybridization ratio. It was observed that hybrid laminate with 50:50 ratio (w/w) of Tensylon® and Dyneema® with Tensylon® as front face showed 200% more energy absorption when compared to 100% Tensylon® laminate and showed equal energy absorption as that of expensive 100% Dyneema® laminate. Moreover, hybrid laminate with TD50:50 ratio showed 40% lower in terms of final back face deformation than Dyneema® laminate. Rate of back face deformation was also found to be slow for hybrid laminate as compared to Dyneema® laminate. Dynamic mechanical analysis showed that, Tensylon® laminate has got higher stiffness and lower damping factor than Dyneema® and hybrid laminates. The interface between Tensylon® and Dyneema® layers was found to be separating during the penetration process due to the poor interfacial bonding. Failure behaviour of laminates for different hybridization ratios were studied by sectioning the impacted laminates. It was observed that, the Tensylon® laminate has undergone shear cutting of fibers as major failure mode whereas the hybrid laminate showed shear cutting followed by tensile stretching, fiber pull out and delamination. These inputs are highly useful for body armour applications to design cost effective armour with enhanced performance.

Keywords
Dyneema®
Tensylon®
Hybrid laminate
Ballistic impact
Energy absorption
Back face signature



Description



   

Indexed in scopus

https://www.scopus.com/authid/detail.uri?authorId=7402570017
      

Article metrics

10.31763/DSJ.v5i1.1674 Abstract views : | PDF views :

   

Cite

   

Full Text

Download

Conflict of interest


“Authors state no conflict of interest”


Funding Information


This research received no external funding or grants


Peer review:


Peer review under responsibility of Defence Science Journal


Ethics approval:


Not applicable.


Consent for publication:


Not applicable.


Acknowledgements:


None.