Design optimization of composite egg-shaped submersible pressure hull for minimum buoyancy factor
Abstract
This paper describes a design optimization study of the composite egg-shaped submersible pressure hull employing optimization and finite element analysis (FEA) tools as a first attempt to provide an optimized design of the composite egg-shaped pressure hull for manufacturing or further investigations. A total of 15 optimal designs for the composite egg-shaped pressure hull under hydrostatic pressure are obtained in terms of fibers’ angles and the number of layers for 5 lay-up arrangements and 3 unidirectional (UD) composite materials. The optimization process is performed utilizing a genetic algorithm and FEA in ANSYS. The minimization of the buoyancy factor (????.????) is selected as the objective for the optimization under constraints on both material failure and buckling strength. Nonlinear buckling analysis is conducted for one optimal design considering both geometric nonlinearity and imperfections. A sensitivity study is also conducted to further investigate the influence of the design variables on the optimal design of the egg-shaped pressure hull.
Keywords
Composite egg-shaped pressure hull
Design optimization
Buoyancy factor
Material failure
Buckling instability
Description
Indexed in scopushttps://www.scopus.com/authid/detail.uri?authorId=57200275504 |
Article metrics10.31763/DSJ.v5i1.1674 Abstract views : | PDF views : |
Cite |
Full Text![]() |
Conflict of interest
“Authors state no conflict of interest”
Funding Information
This research received no external funding or grants
Peer review:
Peer review under responsibility of Defence Science Journal
Ethics approval:
Not applicable.
Consent for publication:
Not applicable.
Acknowledgements:
None.