Irreversible demagnetization mechanism of permanent magnets during electromagnetic buffering
Abstract
The permanent magnets will be irreversibly demagnetized under high temperature and high velocity during the electromagnetic buffering. In this study, the magnetic field induced by eddy currents and the self-demagnetizing field of permanent magnet are taken into consideration together for demagnetization analyse. The magnetic Reynolds number is used to express the eddy currents demagnetization. The correction coefficient being expressed as the index of the air-gap width, the inner cylinder thickness, iron pole axial length and the permanent magnet demagnetization coefficient is introduced by magnetic path analysis to represent the self-demagnetization effect and the demagnetization extent. The electromagnetic buffer (EMB) prototype is tested under intensive impact loads of different strengths at room temperature. The accuracy of the nonlinear irreversible demagnetization finite element model is verified by demagnetization on damping force, velocity and displacement. Finally, high-velocity demagnetization and high-temperature demagnetization are analysed in order to obtain the distribution law of irreversible demagnetization.
Keywords
EMB
Irreversibly demagnetization
Magnetic Reynolds number
Correction coefficient
Description
Indexed in scopushttps://www.scopus.com/authid/detail.uri?authorId=57194341520 |
Article metrics10.31763/DSJ.v5i1.1674 Abstract views : | PDF views : |
Cite |
Full Text![]() |
Conflict of interest
“Authors state no conflict of interest”
Funding Information
This research received no external funding or grants
Peer review:
Peer review under responsibility of Defence Science Journal
Ethics approval:
Not applicable.
Consent for publication:
Not applicable.
Acknowledgements:
None.