Survival and growth of soil microbial communities under influence of sodium perchlorates

Received: 12 Feb 2021, Revised: 14 Feb 2021, Accepted: 10 June 2021, Available online: 18 June 2021, Version of Record: 18 June 2021

Vladimir Cheptsov*
Affiliation:
Lomonosov Moscow State University, Leninskie Gory, 1, 12, Moscow, 119234, RussiaSpace Research Institute, Russian Academy of Sciences, Profsoyuznaya str., 84/32, Moscow, 117997, RussiaNetwork of Researchers on the Chemical Evolution of Life, Leeds, UK
Andrey Belov
Affiliation:
Lomonosov Moscow State University, Leninskie Gory, 1, 12, Moscow, 119234, RussiaNetwork of Researchers on the Chemical Evolution of Life, Leeds, UK
Olga Soloveva
Affiliation:
Lomonosov Moscow State University, Leninskie Gory, 1, 12, Moscow, 119234, Russia
Elena Vorobyova
Affiliation:
Lomonosov Moscow State University, Leninskie Gory, 1, 12, Moscow, 119234, RussiaNetwork of Researchers on the Chemical Evolution of Life, Leeds, UK
George Osipov
Affiliation:
International Analytical Center, Interlab, N.D. Zelinsky Institute of Organic Chemistry, Leninsky Prospekt, 47, Moscow, 119991, Russia
Natalia Manucharova
Affiliation:
Lomonosov Moscow State University, Leninskie Gory, 1, 12, Moscow, 119234, Russia
Michael Gorlenko
Affiliation:
Lomonosov Moscow State University, Leninskie Gory, 1, 12, Moscow, 119234, Russia
*
Author for correspondence: Vladimir Cheptsov, E-mail: cheptcov.vladimir@gmail.com

Abstract


Previously conducted space missions revealed the presence of perchlorates, which are known to have a high oxidizing potential in Martian regolith, at the level of 0.5%. Due to hygroscopic properties and crystallization features of perchlorate-containing solutions, assumptions leading to the possibility of the existence of liquid water in the form of brines, which can contribute to the vital activity of microorganisms, have been made. At the same time, high concentrations of perchlorates can inhibit the growth of microorganisms and cause their death. Previously performed studies have discovered the presence of highly diverse microbial communities in terrestrial perchlorate-containing soils and have also demonstrated the stability and activity of some prokaryotes cultured on highly concentrated perchlorates media (over 10%). Nevertheless, the limits of microbial tolerance to perchlorates and whether microbial communities are able to withstand the effects of high concentrations of perchlorates remain uncertain. The aim of this research was to study the reaction of microbial communities of hot-arid and cryo-arid soils and sedimentary rocks to the adding of a highly concentrated solution of sodium perchlorate (5%) in situ. An increase in the total number of prokaryotes, the number of metabolically active Bacteria and Archaea, and the variety of the consumed substrates were revealed. It was observed that in samples incubated with sodium perchlorate, a high taxonomic diversity of the microbial community is preserved at a level comparable to control sample. The study shows that the presence of high concentrations of sodium perchlorate (5%) in the soil does not lead to the death or significant inhibition of microbial communities.

 
Keywords: Marsmetabolic activitymicro , organism, soxidative, stresstolerance



Description



   

Indexed in scopus

https://www.scopus.com/authid/detail.uri?authorId=57196006406
      

Article metrics

10.31763/DSJ.v5i1.1674 Abstract views : | PDF views :

   

Cite

   

Full Text

Download

Conflict of interest


“Authors state no conflict of interest”


Funding Information


This research received no external funding or grants


Peer review:


Peer review under responsibility of Defence Science Journal


Ethics approval:


Not applicable.


Consent for publication:


Not applicable.


Acknowledgements:


None.